skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, Leif"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although rates of fluvial incision across the Colorado Plateau are known reasonably well, rate variability through time and its controlling processes are still poorly understood. We used boulder armored benches from the Teasdale-Torrey lowlands reach of the Fremont River in the northwestern Colorado Plateau (Utah, USA) as temporal markers to determine regional incision rates and explore controls on rate variability. Bench gravels are sourced from Tertiary volcanic rocks capping nearby Boulder and Thousand Lakes Mountains. The sedimentology of bench deposits suggests that most form from mass movement with later fluvial reworking. Volcanic boulders are tougher than the local sedimentary bedrock, which promotes boulder armoring and topographic inversion. Thirty-seven boulder cosmogenic 3He exposure ages from 11 different benches range from >600 ka to ca. 100 ka. Soil carbonate stages from two benches are in good agreement with surface exposure ages. Averaged Fremont River and tributary incision rates determined from bench exposure ages are 32% faster for tributaries off of Thousand Lakes Mountain (0.41 m/k.y.) than tributaries off of Boulder Mountain (0.28 m/k.y.). This difference in incision rate may be due to Laramideage structures limiting incision for the tributaries that drain Boulder Mountain and extensive Pleistocene ice caps on Boulder Mountain creating a wider and thicker boulder armor slowing incision. 
    more » « less
    Free, publicly-accessible full text available September 5, 2026
  2. The glacial geology community has developed digital reconstructions of Pleistocene glaciers in the western U.S. through decades of regionally focused research and interpretations of geologic maps. These paleoglacier reconstructions afford an opportunity to develop paleoclimate reconstructions for the Late Quaternary in the western U.S., especially when combined with cosmogenic chronologies and other paleoclimate proxies and model output. Here, we present a geospatial database of Late Pleistocene mountain glaciers for the conterminous western U.S. based on compilations of paleoglacier reconstructions spanning glaciated mountains in the region. The database consists of paleoglacier outlines as georeferenced polygons drawn at scales ranging from 1:24,000 to 1:100,000, reflecting differences in available mapping data and degrees of confidence in identifying glacial deposits and landforms used to identify paleoglacier limits. The database is available as a web feature service designed to be easily represented in a geographic information system or web mapping application to enable visualization of the pattern of Late Pleistocene mountain glaciation and analysis of paleoglacier outlines and derivative products, such as equilibrium-line altitudes and boundaries of modeled paleoglaciers. We illustrate potential applications of the database for visualization and data assimilation with an example from mountains neighboring the Lake Bonneville basin, where paleoglacier outlines are based on 1:24,000 scale mapping of glacial deposits and landforms and cosmogenic chronologies of moraines are abundant. For this research, the database enables an analysis of the pattern of glaciation in the region and, through assimilation with chronological data, an assessment of the relative timing of glacier maxima and the time when Lake Bonneville overflowed. While the database can be easily shared among users and represented in a geographic information system, development of the database requires community input to maximize its utility for users across disciplines. A goal of this presentation is to encourage interested users to share ideas for developing an accessible, scalable, and community-supported database of paleoglaciers. 
    more » « less
  3. The Chaos Canyon landslide, which collapsed on the afternoon of 28 June 2022 in Rocky Mountain National Park, presents an opportunity to evaluate instabilities within alpine regions faced with a warming and dynamic climate. Video documentation of the landslide was captured by several eyewitnesses and motivated a rapid field campaign. Initial estimates put the failure area at 66 630 m2, with an average elevation of 3555 m above sea level. We undertook an investigation of previous movement of this landslide, measured the volume of material involved, evaluated the potential presence of interstitial ice and snow within the failed deposit, and examined potential climatological impacts on the collapse of the slope. Satellite radar and optical measurements were used to calculate deformation of the landslide in the 5 years leading up to collapse. From 2017 to 2019, the landslide moved ∼5 m yr−1, accelerating to 17 m yr−1 in 2019. Movement took place through both internal deformation and basal sliding. Climate analysis reveals that the collapse took place during peak snowmelt, and 2022 followed 10 years of higher than average positive degree day sums. We also made use of slope stability modeling to test what factors controlled the stability of the area. Models indicate that even a small increase in the water table reduces the factor of safety to <1, leading to failure. We posit that a combination of permafrost thaw from increasing average temperatures, progressive weakening of the basal shear zone from several years of movement, and an increase in pore-fluid pressure from snowmelt led to the 28 June collapse. Material volumes were estimated using structure from motion (SfM) models incorporating photographs from two field expeditions on 8 July 2022 – 10 d after the slide. Detailed mapping and SfM models indicate that ∼1 258 000 ± 150 000 m3 of material was deposited at the slide toe and ∼1 340 000 ± 133 000 m3 of material was evacuated from the source area. The Chaos Canyon landslide may be representative of future dynamic alpine topography, wherein slope failures become more common in a warming climate. 
    more » « less
  4. Constraining the timescales of sediment transport by glacier systems is important for understanding the processes controlling sediment dynamics within glacierized catchments, and because the accumulation of supraglacial sediment influences glacier response to climate change. However, glacial sediment transport can be difficult to observe; sediment can be transported englacially, subglacially, supraglacially or at the ice margins, and may be stored temporarily on headwall slopes or within moraines before being (re‐)entrained and transported by glacier ice. This study is a proof of concept of the use of luminescence rock surface burial dating to establish rates of englacial sediment transport. Our novel approach combines luminescence rock surface burial dating of englacial clasts with an ice‐flow model that includes Lagrangian particle tracking to quantify rates of sediment transport through the Miage Glacier catchment in the Italian Alps. Luminescence rock surface burial ages for seven samples embedded in the near‐surface ice in the ablation area range from 0.0 ± 1.0 to 4.7 ± 0.3 ka and are consistent with the ice‐flow model results. Our results show that the transport durations of individual clasts vary by an order of magnitude, implying rapid clast transport near the glacier surface and longer transport histories for clasts transported lower in the ice column. In some cases, clasts were stored on the headwalls or within ice‐marginal moraines for several thousand years before being englacially transported. The results illustrate the different routes by which glaciers transport sediment and provide the first direct measurements of englacial sediment transport duration. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. The western Arctic Ocean is rapidly acidifying due to sea ice loss. 
    more » « less
  6. Abstract. Strong similarities in Holocene climate reconstructions derived from multipleproxies (BSi, TOC – total organic carbon, δ13C, C∕N, MS – magnetic susceptibility, δ15N)preserved in sediments from both glacial and non-glacial lakes across Icelandindicate a relatively warm early to mid Holocene from 10 to 6 ka,overprinted with cold excursions presumably related to meltwater impact onNorth Atlantic circulation until 7.9 ka. Sediment in lakes from glacialcatchments indicates their catchments were ice-free during this interval.Statistical treatment of the high-resolution multi-proxy paleoclimate lakerecords shows that despite great variability in catchment characteristics,the sediment records document more or less synchronous abrupt, colddepartures as opposed to the smoothly decreasing trend in Northern Hemispheresummer insolation. Although all lake records document a decline in summertemperature through the Holocene consistent with the regular decline insummer insolation, the onset of significant summer cooling occurs ∼5 ka at high-elevation interior sites but is variably later at sitescloser to the coast, suggesting that proximity to the sea may modulate the impactfrom decreasing summer insolation. The timing of glacier inception during themid Holocene is determined by the descent of the equilibrium line altitude(ELA), which is dominated by the evolution of summer temperature as summerinsolation declined as well as changes in sea surface temperature for coastalglacial systems. The glacial response to the ELA decline is also highlydependent on the local topography. The initial ∼5 ka nucleation ofLangjökull in the highlands of Iceland defines the onset of neoglaciationin Iceland. Subsequently, a stepwise expansion of both Langjökull andnortheast Vatnajökull occurred between 4.5 and 4.0 ka, with a secondabrupt expansion ∼3 ka. Due to its coastal setting and lowertopographic threshold, the initial appearance of Drangajökull in the NWof Iceland was delayed until ∼2.3 ka. All lake records reflect abruptsummer temperature and catchment disturbance at ∼4.5 ka, statisticallyindistinguishable from the global 4.2 ka event, and a second widespreadabrupt disturbance at 3.0 ka, similar to the stepwise expansion ofLangjökull and northeast Vatnajökull. Both are intervalscharacterized by large explosive volcanism and tephra distribution in Icelandresulting in intensified local soil erosion. The most widespread increase in glacier advance, landscapeinstability, and soil erosion occurred shortly after 2 ka, likely due to acomplex combination of increased impact from volcanic tephra deposition,cooling climate, and increased sea ice off the coast of Iceland. All lakerecords indicate a strong decline in temperature ∼1.5 ka, whichculminated during the Little Ice Age (1250–1850 CE) when the glaciersreached their maximum Holocene dimensions. 
    more » « less
  7. ABSTRACT Be dating of moraines has greatly improved our ability to constrain the timing of past glaciations and thus past cold events. However, the spread in ages from a single moraine is often greater than would be expected from measurement uncertainty, making paleoclimatic interpretations equivocal. Here we present 28 new10Be ages from ice‐cored Neoglacial moraines on Baffin Island, Arctic Canada, and explore the processes at play in moraine formation and evolution through field observations and a numerical debris‐covered glacier model. The insulating effect of debris cover modifies glacier lengths and results in the development of ice‐cored moraines over multiple advances and thousands of years. Although ice cores can persist for several millennia, spatially variable ice core melt‐out contributes to moraine degradation and boulder destabilization, making it likely that the10Be clock is reset on moraine boulders in these settings. Thus, exposure ages from ice‐cored moraines must be interpreted with caution. The oldest ages, after excluding samples with inheritance, provide the best estimates of initial moraine formation. Three Baffin Island moraines yield10Be ages suggesting formation at 5.2, 4.6 and 3.5 ka, respectively, adding to a growing body of evidence for significant summer cooling millennia before the Little Ice Age. 
    more » « less
  8. Abstract The acidification of coastal waters is distinguished from the open ocean because of much stronger synergistic effects between anthropogenic forcing and local biogeochemical processes. However, ocean acidification research is still rather limited in polar coastal oceans. Here, we present a 17‐year (2002–2019) observational data set in the Chukchi Sea to determine the long‐term changes in pH and aragonite saturation state (Ωarag). We found that pH and Ωaragdeclined in different water masses with average rates of −0.0047 ± 0.0026 years−1and −0.017 ± 0.009 years−1, respectively, and are ∼2–3 times faster than those solely due to increasing atmospheric CO2. We attributed the rapid acidification to the increased dissolved inorganic carbon owing to a combination of ice melt‐induced increased atmospheric CO2invasion and subsurface remineralization induced by a stronger surface biological production as a result of the increased inflow of the nutrient‐rich Pacific water. 
    more » « less